

By O.P. GUPTA (+919650350480)
Topics: Sets Theory

Max. Marks : 40

V Select the correct option in the followings. Each question carries 1 mark.

1. Let $A=\{x: x$ is a three digit number so that the sum of its digits is nine $\}$. Then $n(A)$ is
(a) 9
(b) 10
(c) 11
(d) None of these
2. If $\mathrm{A}=\{\{ \}, \phi\}$, then A is
(a) null set
(b) infinite set
(c) singleton set
(d) disjoint set
3. For $\mathrm{X}=\{0,1,2\}$ and $\mathrm{Y}=\{ \}, \mathrm{Y}-\mathrm{X}=$
(a) $\{0,1,2\}$
(b) $\{2\}$
(c) $\{1\}$
(d) ϕ
4. If U is a universal set and A is a non-empty set then, which of the following is true?
(a) $\mathrm{A} \cup \mathrm{U}=\mathrm{A}$
(b) $A \cup U=U$
(c) $\mathrm{A} \cap \mathrm{U}=\mathrm{U}$
(d) $A \cap A^{\prime}=U$
5. If U is a universal set and A is a non-empty set then, which of the following is not true?
(a) $\mathrm{A} \cup \mathrm{U}^{\prime}=\mathrm{A}$
(b) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$
(c) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{A}$
(d) $\mathrm{A} \cap \mathrm{A}^{\prime}=\phi$
6. Which one of the following pair of sets is non-disjoint?
(a) $\{\mathrm{x}, \mathrm{y}\},\{\mathrm{u}, \mathrm{v}\}$
(b) $\{\mathrm{x}, \mathrm{y}\},\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$
(c) $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\},\{\mathrm{u}, \mathrm{v}\}$
(d) $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\},\{\mathrm{u}, \mathrm{v}, \mathrm{z}\}$
7. Let $\mathrm{A}=\left\{\mathrm{x}: \mathrm{x} \in \mathrm{Z}^{+}, \mathrm{x}^{2}+\mathrm{x}-12=0\right\}$. Then the cardinal number of set A is
(a) $\{3\}$
(b) $\{3,-4\}$
(c) 1
(d) $\{1\}$
8. For the set $A=\left\{x: x^{2}+x-2=0\right\}$, what is the total number of proper subsets of A ?
(a) 1
(b) 2
(c) 3
(d) 4
9. For $A=\{-1,0,1\}, B=\{-1,1,3,5\}, A \cup B=$
(a) $\{-1,1\}$
(b) $\{-1,0,1,3,5\}$
(c) $\{-1,1,3,5\}$
(d) $\{-1,0,1\}$
10. For $\mathrm{A}=\{-1,0,1\}, \mathrm{B}=\{-1,1,3,5\}, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=$
(a) $\{-1,1\}$
(b) $\{-1,0,1,3,5\}$
(c) $\{-1,1,3,5\}$
(d) 2
11. For $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4,5,6\}, \mathrm{A}-\mathrm{B}=$
(a) $\{4,5,6\}$
(b) $\{1,2,3\}$
(c) $\{3\}$
(d) $\{1,2\}$
12. Let $n(A)=6, n(B)=3, n(A \cup B)=7$. Then $n(A \cap B)=$
(a) 11
(b) 16
(c) 2
(d) 0
13. For $\mathrm{U}=\{1,2,3, \ldots, 9\}$ and $\mathrm{A}^{\prime}=\{1,3,5,7,8\}, \mathrm{A}=$
(a) $\{2,4,6,8\}$
(b) $\{2,4,6,8,9\}$
(c) $\{2,3,4,6,8\}$
(d) $\{2,4,6,9\}$
14. If $\mathrm{A}=\{\phi\}$, then total number of subsets of A is
(a) 1
(b) 2
(c) 4
(d) 0
15. If $A=\{1,2,3\}$ and n represents any member of A, then the roster form of a set, containing element 3 n is given by
(a) $\{1,2,3\}$
(b) $\{0,1,2\}$
(c) $\{6,12,18\}$
(d) $\{3,6,9\}$
16. Set builder form of $\{11,13,17,19\}$ is
(a) $\{\mathrm{x}: \mathrm{x}$ is a prime natural no. between 10 and 20\}
(b) $\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x}$ is a prime no. less than 20$\}$
(c) $\{\mathrm{x}: \mathrm{x}$ is an odd natural no. between 10 and 20\}
(d) $\{\mathrm{x}: \mathrm{x}$ is an odd natural no. less than 20$\}$
17. If $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{B}=\{2,4,6\}$ and $\mathrm{C}=\{3,4,6\}$, then $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}=$
(a) $\{3,4,6\}$
(b) $\{1,2,3\}$
(c) $\{1,4,3\}$
(d) None of these
18. $\{x: x \neq x\}$ is
(a) $\{\phi\}$
(b) ϕ
(c) $\{0\}$
(d) $\{1\}$
19. If P is the set of all parallelograms and T is the set of all trapeziums, then $\mathrm{P} \cap \mathrm{T}$ is
(a) P
(b) T
(c) ϕ
(d) set of all quadrilaterals
20. In the class of a government school, 70 students wrote two tests : Test I and Test II. 50% of the students failed in Test I and 40% of the students failed in Test II. How many students passed in both tests?
(a) 21
(b) 7
(c) 28
(d) 14
21. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $Y=\{9(n-1): n \in N\}$, then $X \cup Y=$
(a) X
(b) Y
(c) ϕ
(d) N (Natural numbers)
22. Let $A=\{x: x$ is a multiple of 3$\}$ and $B=\{x: x$ is a multiple of 5$\}$. Then $A \cap B$ is
(a) $\{3,6,9, \ldots\}$
(b) $\{5,10,15, \ldots\}$
(c) $\{15,30,45, \ldots\}$
(d) ϕ
23. Let A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
(a) 3
(b) 6
(c) 9
(d) 0
24. If A and B are two sets, then $A \cap(A \cup B)$ equals
(a) A
(b) B
(c) ϕ
(d) None of these
25. Let $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is an odd natural number less than 19$\}, \mathrm{B}=\{\mathrm{x}: \mathrm{x}$ is an even natural number less than 19$\}$ and N is the universal set. Then $A^{\prime} \cup\left[(A \cup B) \cap B^{\prime}\right]=$
(a) A
(b) B
(c) N
(d) None of these
26. Let $n(U)=700, n(A)=200, n(B)=300$ and $n(A \cap B)=100$. Then $n\left(A^{c} \cap B^{c}\right)$ equals
(a) 600
(b) 400
(c) 300
(d) 200
27. If A and B are two sets such that $A \subset B$, then $A \cap B^{\prime}$ is
(a) A
(b) B^{\prime}
(c) ϕ
(d) $\mathrm{A} \cap \mathrm{B}$
28. If $n(A \cup B)=18, n(A-B)=5, n(B-A)=3$, then $n(A \cap B)$ is
(a) 18
(b) 10
(c) 15
(d) 12
29. If $n(A)=5$ and $n(B)=7$, then maximum number of elements in $A \cup B$ is
(a) 7
(b) 5
(c) 12
(d) None of these
30. For any two sets A and $\mathrm{B},(\mathrm{A}-\mathrm{B}) \cap(\mathrm{B}-\mathrm{A})=$
(a) $(\mathrm{A}-\mathrm{B}) \cup \mathrm{A}$
(b) $(\mathrm{B}-\mathrm{A}) \cup \mathrm{B}$
(c) $(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$
(d) ϕ
31. If $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$, then
(a) $\mathrm{A} \subset \mathrm{B}$
(b) $\mathrm{B} \subset \mathrm{A}$
(c) $\mathrm{A}=\phi$
(d) $\mathrm{B}=\phi$
32. Which of the following is not correct?
(a) $\{x: 1<x \leq 4, x \in R\}=(1,4]$
(b) $\mathrm{A} \cap \mathrm{A}^{\prime}=\phi$
(c) $\{x: x+4=4\}$ is not empty set
(d) $\mathrm{A} \cap \mathrm{B} \neq \phi$, when A and B are disjoint sets
33. Two finite sets have m and n elements. The total number of subsets of the first set is 240 more than the total number of subsets of the second set. Then the values of m and n will be given by
(a) $\mathrm{m}=8, \mathrm{n}=4$
(b) $\mathrm{m}=4, \mathrm{n}=8$
(c) $\mathrm{m}=4, \mathrm{n}=4$
(d) $\mathrm{m}=8, \mathrm{n}=8$
34. Let $A_{1}=\{1,2,3,4\}, A_{2}=\{3,4,5,6\}, A_{3}=\{4,5,6,7,8\}$, then $\bigcap_{n=1} A_{n}=$
(a) 4
(b) $\{4\}$
(c) $\{4,5,6\}$
(d) $\{1,2,3,4,5,6,7,8\}$
35. If $A \cup\{a, b\}=\{a, b, c, d, e\}$, then the smallest set A will be
(a) $\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$
(b) $\{a, b, c, d, e\}$
(c) $\{a, b\}$
(d) ϕ
36. If a $N=\{a x: x \in N\}$, the the set $3 N \cap 7 N$ will be
(a) 3 N
(b) 7 N
(c) 21 N
(d) ϕ
37. Let A be the set of all divisors of the number $15, \mathrm{~B}$ be the set of prime numbers smaller than 10 and C be the set of even numbers smaller than 9 , then the value of $(A \cup C) \cap B$ is
(a) $\{3\}$
(b) $\{2\}$
(c) $\{2,3,5\}$
(d) $\{3\}$

Question numbers 38 to 40 are Assertion and Reason based questions. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
(c) Assertion (A) is true but Reason (R) is false.
(d) Assertion (A) is false but Reason (R) is true.
38. Assertion (A) : Two sets P and Q are such that $n(P \cup Q)=21, n\left(P^{\prime} \cap Q^{\prime}\right)=9, n(P \cap Q)=7$, then $\mathrm{n}(\mathrm{P} \cap \mathrm{Q})^{\prime}=23$.
Reason (R): $P-Q=\{x: x \in P$ and $x \in Q\}$.
39. Assertion (A) : $\mathrm{X} \cap \overline{\mathrm{Y}}=\mathrm{X}-\mathrm{Y}$.

Reason (R) : $X \cup Y=\{x: x \in X$ or $x \in Y\}$.
40. Assertion (A) : If $\mathrm{T}=\left\{\mathrm{x} \left\lvert\, \frac{\mathrm{x}+5}{\mathrm{x}-7}-5=\frac{4 \mathrm{x}-40}{13-\mathrm{x}}\right.\right\}$, then T is an empty set.

Reason (R) : A set without any element is called an empty set.

XI (Academic session 2023-24).

1. MATHMISSION FOR XI
■ COMPLETE THEORY \& EXAMPLES ■ SUBJECTIVE TYPE QUESTIONS ■ COMPETENCY FOCUSED QUESTIONS

* Multiple Choice Questions
* Assertion-Reason Questions
* Case-Study Questions
* Passage-Based Questions

2. SOLUTIONS OF MATHMISSION \square Step-by-step Detailed Solutions
(For all Exercises of MATHMISSION)

This document contains MCQs for Mathematics (041) of class XI.

- Answers / Solutions shall be available on YouTube channel - Mathematicia By O.P. Gupta You can share this document with other students!
\$ With a lot of Blessings!

O.P. GUPTA

Author \& Math Mentor
Indira Award Winner
1 The O.P. Gupta Advanced Math Classes @ Think Academy, Near Dhansa Bus Stand Metro Station Gate No.3, Najafgarh, Delhi
(Q) Telegram / WhatsApp : +919650350480

Exclusive coaching for Maths (041) By O.P. GUPTA
■ CBSE XII
■ CBSE XI
■ CUET
■ JEE - MAIN
■ NDA

- YouTube.com/MathematiciaByOPGupta

